Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202400218, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658314

RESUMO

Synthetic modulators for plant 14-3-3s are promising chemical tools both for understanding the 14-3-3-related signaling pathways and controlling plant physiology. Here, we describe a novel small-molecule inhibitor for 14-3-3 proteins ofArabidopsis thaliana. The inhibitor was identified from unexpected products in DMSO stock solution of an in-house chemical library. Mass spectroscopy, mutant-based analyses, fluorescence polarization assays, and thermal shift assaysrevealed that the inhibitor covalently binds to an allosteric site of 14-3-3 with isoform selectivity. Moreover, infiltration of the inhibitor to Arabidopsis leaves suppressed the stomatal aperture. The inhibitor should provide a new insight into the design of potent and isoform-selective 14-3-3 modulators.

2.
Virus Res ; 339: 199248, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37858730

RESUMO

Bat-borne emerging zoonotic viruses cause major outbreaks, such as the Ebola virus, Nipah virus, and/or beta coronavirus. Pteropine orthoreovirus (PRV), whose spillover event occurred from fruits bats to humans, causes respiratory syndrome in humans widely in South East Asia. Repurposing approved drugs against PRV is an effective tool to confront future PRV pandemics. We screened 2,943 compounds in an FDA-approved drug library and identified eight hit compounds that reduce viral cytopathic effects on cultured Vero cells. Real-time quantitative PCR analysis revealed that six of eight hit compounds significantly inhibited PRV replication. Among them, micafungin used clinically as an antifungal drug, displayed a prominent antiviral effect on PRV. Secondly, the antiviral effects of micafungin on PRV infected human cell lines (HEK293T and A549), and their transcriptome changes by PRV infection were investigated, compared to four different bat-derived cell lines (FBKT1 (Ryukyu flying fox), DEMKT1 (Leschenault's rousette), BKT1 (Greater horseshoe bat), YUBFKT1 (Eastern bent-wing bats)). In two human cell lines, unlike bat cells that induce an IFN-γ response pathway, an endoplasmic reticulum stress response pathway was commonly activated. Additionally, micafungin inhibits viral release rather than suppressing PRV genome replication in human cells, although it was disturbed in Vero cells. The target of micafungin's action may vary depending on the animal species, but it must be useful for human purposes as a first choice of medical care.


Assuntos
Quirópteros , Orthoreovirus , Infecções por Reoviridae , Vírus , Animais , Chlorocebus aethiops , Humanos , Orthoreovirus/genética , Micafungina , Células Vero , Células HEK293 , Antivirais/farmacologia
3.
Plant Cell Physiol ; 64(10): 1167-1177, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37498972

RESUMO

Plant seedlings adjust the growth of the hypocotyl in response to surrounding environmental changes. Genetic studies have revealed key players and pathways in hypocotyl growth, such as phytohormones and light signaling. However, because of genetic redundancy in the genome, it is expected that not-yet-revealed mechanisms can be elucidated through approaches different from genetic ones. Here, we identified a small compound, HYGIC (HG), that simultaneously induces hypocotyl elongation and thickening, accompanied by increased nuclear size and enlargement of cortex cells. HG-induced hypocotyl growth required the ethylene signaling pathway activated by endogenous ethylene, involving CONSTITUTIVE PHOTOMORPHOGENIC 1, ETHYLENE INSENSITIVE 2 (EIN2) and redundant transcription factors for ethylene responses, ETHYLENE INSENSITIVE 3 (EIN3) and EIN3 LIKE 1. By using EBS:GUS, a transcriptional reporter of ethylene responses based on an EIN3-binding-cis-element, we found that HG treatment ectopically activates ethylene responses at the epidermis and cortex of the hypocotyl. RNA-seq and subsequent gene ontology analysis revealed that a significant number of HG-induced genes are related to responses to hypoxia. Indeed, submergence, a representative environment where the hypoxia response is induced in nature, promoted ethylene-signaling-dependent hypocotyl elongation and thickening accompanied by ethylene responses at the epidermis and cortex, which resembled the HG treatment. Collectively, the identification and analysis of HG revealed that ectopic responsiveness to ethylene promotes hypocotyl growth, and this mechanism is activated under submergence.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Hipocótilo/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Transdução de Sinais/fisiologia , Etilenos/farmacologia , Etilenos/metabolismo , Hipóxia , Regulação da Expressão Gênica de Plantas
4.
Nat Commun ; 14(1): 2665, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188667

RESUMO

Stomatal pores in the plant epidermis open and close to regulate gas exchange between leaves and the atmosphere. Upon light stimulation, the plasma membrane (PM) H+-ATPase is phosphorylated and activated via an intracellular signal transduction pathway in stomatal guard cells, providing a primary driving force for the opening movement. To uncover and manipulate this stomatal opening pathway, we screened a chemical library and identified benzyl isothiocyanate (BITC), a Brassicales-specific metabolite, as a potent stomatal-opening inhibitor that suppresses PM H+-ATPase phosphorylation. We further developed BITC derivatives with multiple isothiocyanate groups (multi-ITCs), which demonstrate inhibitory activity on stomatal opening up to 66 times stronger, as well as a longer duration of the effect and negligible toxicity. The multi-ITC treatment inhibits plant leaf wilting in both short (1.5 h) and long-term (24 h) periods. Our research elucidates the biological function of BITC and its use as an agrochemical that confers drought tolerance on plants by suppressing stomatal opening.


Assuntos
Proteínas de Arabidopsis , Estômatos de Plantas , Estômatos de Plantas/metabolismo , Luz , Resistência à Seca , ATPases Translocadoras de Prótons/metabolismo , Isotiocianatos/farmacologia , Isotiocianatos/metabolismo , Proteínas de Arabidopsis/metabolismo
5.
Front Plant Sci ; 14: 1099587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36968385

RESUMO

Plants retain the ability to generate a pluripotent tissue called callus by dedifferentiating somatic cells. A pluripotent callus can also be artificially induced by culturing explants with hormone mixtures of auxin and cytokinin, and an entire body can then be regenerated from the callus. Here we identified a pluripotency-inducing small compound, PLU, that induces the formation of callus with tissue regeneration potency without the external application of either auxin or cytokinin. The PLU-induced callus expressed several marker genes related to pluripotency acquisition via lateral root initiation processes. PLU-induced callus formation required activation of the auxin signaling pathway though the amount of active auxin was reduced by PLU treatment. RNA-seq analysis and subsequent experiments revealed that Heat Shock Protein 90 (HSP90) mediates a significant part of the PLU-initiated early events. We also showed that HSP90-dependent induction of TRANSPORT INHIBITOR RESPONSE 1, an auxin receptor gene, is required for the callus formation by PLU. Collectively, this study provides a new tool for manipulating and investigating the induction of plant pluripotency from a different angle from the conventional method with the external application of hormone mixtures.

6.
Life Sci Alliance ; 6(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36849250

RESUMO

Cell division is essential for development and involves spindle assembly, chromosome separation, and cytokinesis. In plants, the genetic tools for controlling the events in cell division at the desired time are limited and ineffective owing to high redundancy and lethality. Therefore, we screened cell division-affecting compounds in Arabidopsis thaliana zygotes, whose cell division is traceable without time-lapse observations. We then determined the target events of the identified compounds using live-cell imaging of tobacco BY-2 cells. Subsequently, we isolated two compounds, PD-180970 and PP2, neither of which caused lethal damage. PD-180970 disrupted microtubule (MT) organization and, thus, nuclear separation, and PP2 blocked phragmoplast formation and impaired cytokinesis. Phosphoproteomic analysis showed that these compounds reduced the phosphorylation of diverse proteins, including MT-associated proteins (MAP70) and class II Kinesin-12. Moreover, these compounds were effective in multiple plant species, such as cucumber (Cucumis sativus) and moss (Physcomitrium patens). These properties make PD-180970 and PP2 useful tools for transiently controlling plant cell division at key manipulation nodes conserved across diverse plant species.


Assuntos
Arabidopsis , Citocinese , Divisão Celular , Proteínas Associadas aos Microtúbulos/genética , Segregação de Cromossomos , Microtúbulos
7.
ACS Chem Biol ; 18(2): 347-355, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36638821

RESUMO

Stomata are pores in the leaf epidermis of plants and their opening and closing regulate gas exchange and water transpiration. Stomatal movements play key roles in both plant growth and stress responses. In recent years, small molecules regulating stomatal movements have been used as a powerful tool in mechanistic studies, as well as key players for agricultural applications. Therefore, the development of new molecules regulating stomatal movement and the elucidation of their mechanisms have attracted much attention. We herein describe the discovery of 2,6-dihalopurines, AUs, as a new stomatal opening inhibitor, and their mechanistic study. Based on biological assays, AUs may involve in the pathway related with plasma membrane H+-ATPase phosphorylation. In addition, we identified leucine-rich repeat extensin proteins (LRXs), LRX3, LRX4 and LRX5 as well as RALF, as target protein candidates of AUs by affinity based pull down assay and molecular dynamics simulation. The mechanism of stomatal movement related with the LRXs-RALF is an unexplored pathway, and therefore further studies may lead to the discovery of new signaling pathways and regulatory factors in the stomatal movement.


Assuntos
Proteínas de Arabidopsis , Estômatos de Plantas , Fosforilação , Membrana Celular/metabolismo , Parede Celular/metabolismo , ATPases Translocadoras de Prótons , Proteínas de Arabidopsis/metabolismo
8.
iScience ; 26(12): 108469, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38213788

RESUMO

During morphogenesis, epithelial tissues reshape and expand to cover the body and organs. The molecular mechanisms of this deformability remain elusive. Here, we investigate the role of the ß-adrenergic receptor (ADRB) in orchestrating actomyosin contractility, pivotal for epithelial extensibility. Chemical screens on Xenopus laevis embryos pinpointed ADRB2 as a principal regulator. ADRB2 promotes actomyosin relaxation, facilitating apical cell area expansion during body elongation. In contrast, ADRB2 knockdown results in heightened cell contraction, marked by synchronous oscillation of F-actin and myosin, impeding body elongation. ADRB2 mutants with reduced affinity for ligand binding lack the function to induce cellular relaxation, highlighting the ligand's essential roles even in the developing epidermis. Our findings unveil ADRB2's critical contribution to extensibility of the epidermis and subsequent body elongation during development. This study also offers insights into the physiology of mature epithelial organs deformed by the smooth muscle response to the adrenergic autonomic nervous system.

9.
F1000Res ; 11: 1016, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36226040

RESUMO

Background: Impairment of the circadian clock has been associated with numerous diseases, including sleep disorders and metabolic disease. Although small molecules that modulate clock function may form the basis of drug discovery of clock-related diseases, only a few compounds that selectively target core clock proteins have been identified. Three scaffolds were previously discovered as small-molecule activators of the clock protein Cryptochrome (CRY), and they have been providing powerful tools to understand and control the circadian clock system. Identifying new scaffolds will expand the possibilities of drug discovery. Methods: A methylbenzimidazole derivative TH401 identified from cell-based circadian screens was characterized. Effects of TH401 on circadian rhythms were evaluated in cellular assays. Functional assays and X-ray crystallography were used to elucidate the effects of the compound on CRY1 and CRY2 isoforms. Results: TH401 lengthened the period of circadian rhythms and stabilized both CRY1 and CRY2. The compound repressed Per2 reporter activity, which was reduced by Cry1 or Cry2 knockout and abolished by Cry1/Cry2 double knockout, indicating the dependence on CRY isoforms. Thermal shift assays showed slightly higher interaction of TH401 with CRY2 over CRY1. The crystal structure of CRY1 in complex with TH401 revealed a conformational change of the gatekeeper W399, which is involved in isoform-selectivity determination. Conclusions: The present study identified a new small molecule TH401 that targets both CRY isoforms. This compound has expanded the chemical diversity of CRY activators, and will ultimately aid in the development of therapeutics against circadian clock-related disorders.


Assuntos
Relógios Circadianos , Criptocromos , Animais , Criptocromos/química , Criptocromos/metabolismo , Ritmo Circadiano/fisiologia , Relógios Circadianos/fisiologia , Mamíferos/metabolismo , Isoformas de Proteínas
10.
Org Lett ; 24(40): 7366-7371, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36194477

RESUMO

Photoinduced benzylic C-H thiocyanation is described. A series of alkyl thiocyanates were efficiently obtained by using Selectfluor as the oxidant. Moreover, we accomplished the one-pot isothiocyanation following the C-H thiocyanation. The thiocyanates and isothiocyanates were applied to the divergent transformation of pharmaceuticals.


Assuntos
Hidrogênio , Tiocianatos , Isotiocianatos , Oxidantes , Preparações Farmacêuticas
11.
Curr Biol ; 32(22): 4881-4889.e5, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-36306789

RESUMO

Many organisms living along the coastlines synchronize their reproduction with the lunar cycle. At the time of spring tide, thousands of grass puffers (Takifugu alboplumbeus) aggregate and vigorously tremble their bodies at the water's edge to spawn. To understand the mechanisms underlying this spectacular semilunar beach spawning, we collected the hypothalamus and pituitary from male grass puffers every week for 2 months. RNA sequencing (RNA-seq) analysis identified 125 semilunar genes, including genes crucial for reproduction (e.g., gonadotropin-releasing hormone 1 [gnrh1], luteinizing hormone ß subunit [lhb]) and receptors for pheromone prostaglandin E (PGE). PGE2 is secreted into the seawater during the spawning, and its administration activates olfactory sensory neurons and triggers trembling behavior of surrounding individuals. These results suggest that PGE2 synchronizes lunar-regulated beach-spawning behavior in grass puffers. To further explore the mechanism that regulates the lunar-synchronized transcription of semilunar genes, we searched for semilunar transcription factors. Spatial transcriptomics and multiplex fluorescent in situ hybridization showed co-localization of the semilunar transcription factor CCAAT/enhancer-binding protein δ (cebpd) and gnrh1, and cebpd induced the promoter activity of gnrh1. Taken together, our study demonstrates semilunar genes that mediate lunar-synchronized beach-spawning behavior. VIDEO ABSTRACT.


Assuntos
Lua , Takifugu , Humanos , Animais , Masculino , Takifugu/genética , Takifugu/metabolismo , Hibridização in Situ Fluorescente , Reprodução/fisiologia , Prostaglandinas E/metabolismo , Prostaglandinas/metabolismo
12.
New Phytol ; 235(4): 1336-1343, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35661165

RESUMO

Circadian clocks regulate the diel rhythmic physiological activities of plants, enabling them to anticipate and adapt to day-night and seasonal changes. Genetic and biochemical approaches have suggested that transcription-translation feedback loops (TTFL) are crucial for Arabidopsis clock function. Recently, the study of chemical chronobiology has emerged as a discipline within the circadian clock field, with important and complementary discoveries from both plant and animal research. In this review, we introduce recent advances in chemical biology using small molecules to perturb plant circadian clock function through TTFL components. Studies using small molecule clock modulators have been instrumental for revealing the role of post-translational modification in the clock, or the metabolite-dependent clock input pathway, as well as for controlling clock-dependent flowering time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Biologia , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Plantas/genética , Plantas/metabolismo
13.
Viruses ; 14(2)2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35215982

RESUMO

Inhibition of transmembrane serine protease 2 (TMPRSS2) is expected to block the spike protein-mediated fusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Nafamostat, a potent TMPRSS2 inhibitor as well as a candidate for anti-SARS-CoV-2 drug, possesses the same acyl substructure as camostat, but is known to have a greater antiviral effect. A unique aspect of the molecular binding of nafamostat has been recently reported to be the formation of a covalent bond between its acyl substructure and Ser441 in TMPRSS2. In this study, we investigated crucial elements that cause the difference in anti-SARS-CoV-2 activity of nafamostat and camostat. In silico analysis showed that Asp435 significantly contributes to the binding of nafamostat and camostat to TMPRSS2, while Glu299 interacts strongly only with nafamostat. The estimated binding affinity for each compound with TMPRSS2 was actually consistent with the higher activity of nafamostat; however, the evaluation of the newly synthesized nafamostat derivatives revealed that the predicted binding affinity did not correlate with their anti-SARS-CoV-2 activity measured by the cytopathic effect (CPE) inhibition assay. It was further shown that the substitution of the ester bond with amide bond in nafamostat resulted in significantly weakened anti-SARS-CoV-2 activity. These results strongly indicate that the ease of covalent bond formation with Ser441 in TMPRSS2 possibly plays a major role in the anti-SARS-CoV-2 effect of nafamostat and its derivatives.


Assuntos
Antivirais/farmacologia , Benzamidinas/farmacologia , Simulação por Computador , Guanidinas/farmacologia , Inibidores de Proteases/farmacologia , SARS-CoV-2/efeitos dos fármacos , Benzamidinas/química , Linhagem Celular , Guanidinas/química , Humanos , Simulação de Dinâmica Molecular , Inibidores de Proteases/química , Serina Endopeptidases/metabolismo , Internalização do Vírus/efeitos dos fármacos , Tratamento Farmacológico da COVID-19
14.
Plant Cell Physiol ; 63(4): 450-462, 2022 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-35086143

RESUMO

The circadian clock is an internal timekeeping system that governs about 24 h biological rhythms of a broad range of developmental and metabolic activities. The clocks in eukaryotes are thought to rely on lineage-specific transcriptional-translational feedback loops. However, the mechanisms underlying the basic transcriptional regulation events for clock function have not yet been fully explored. Here, through a combination of chemical biology and genetic approaches, we demonstrate that phosphorylation of RNA polymerase II by CYCLIN DEPENDENT KINASE C; 2 (CDKC;2) is required for maintaining the circadian period in Arabidopsis. Chemical screening identified BML-259, the inhibitor of mammalian CDK2/CDK5, as a compound lengthening the circadian period of Arabidopsis. Short-term BML-259 treatment resulted in decreased expression of most clock-associated genes. Development of a chemical probe followed by affinity proteomics revealed that BML-259 binds to CDKC;2. Loss-of-function mutations of cdkc;2 caused a long period phenotype. In vitro experiments demonstrated that the CDKC;2 immunocomplex phosphorylates the C-terminal domain of RNA polymerase II, and BML-259 inhibits this phosphorylation. Collectively, this study suggests that transcriptional activity maintained by CDKC;2 is required for proper period length, which is an essential feature of the circadian clock in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Animais , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Regulação da Expressão Gênica de Plantas , Mamíferos/metabolismo , Fosforilação , RNA Polimerase II/genética , RNA Polimerase II/metabolismo
15.
Sci Rep ; 11(1): 21038, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702865

RESUMO

Circadian rhythm is an approximately 24 h endogenous biological rhythm. Chronic disruption of the circadian clock leads to an increased risk of diabetes, cardiovascular disease, and cancer. Hence, it is important to develop circadian clock modulators. Natural organisms are a good source of several medicines currently in use. Crude drugs used in Japanese traditional Kampo medicine or folk medicines are an excellent source for drug discovery. Furthermore, identifying new functions for existing drugs, known as the drug repositioning approach, is a popular and powerful tool. In this study, we screened 137 crude drug extracts to act as circadian clock modulators in human U2OS cells stably expressing the clock reporter Bmal1-dLuc, and approximately 12% of these modulated the circadian rhythm. We further examined the effects of several crude drugs in Rat-1 fibroblasts stably expressing Per2-luc, explant culture of lung from Per2::Luciferase knockin mice, and zebrafish larvae in vivo. Notably, more than half of the major ingredients of these crude drugs were reported to target AKT and its relevant signaling pathways. As expected, analysis of the major ingredients targeting AKT signaling confirmed the circadian clock-modulating effects. Furthermore, activator and inhibitor of AKT, and triple knockdown of AKT isoforms by siRNA also modulated the circadian rhythm. This study, by employing the drug repositioning approach, shows that Kampo medicines are a useful source for the identification of underlying mechanisms of circadian clock modulators and could potentially be used in the treatment of circadian clock disruption.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Misturas Complexas , Medicamentos de Ervas Chinesas , Medicina Kampo , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Relógios Circadianos/genética , Misturas Complexas/química , Misturas Complexas/farmacologia , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Humanos , Camundongos , Camundongos Transgênicos , Ratos , Peixe-Zebra/genética , Peixe-Zebra/metabolismo
16.
Plants (Basel) ; 10(5)2021 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-34068843

RESUMO

Salinity stress is a major threat to agriculture and global food security. Chemical priming is a promising approach to improving salinity stress tolerance in plants. To identify small molecules with the capacity to enhance salinity stress tolerance in plants, chemical screening was performed using Arabidopsis thaliana. We screened 6400 compounds from the Nagoya University Institute of Transformative Bio-Molecule (ITbM) chemical library and identified one compound, Natolen128, that enhanced salinity-stress tolerance. Furthermore, we isolated a negative compound of Natolen128, namely Necolen124, that did not enhance salinity stress tolerance, though it has a similar chemical structure to Natolen128. We conducted a transcriptomic analysis of Natolen128 and Necolen124 to investigate how Natolen128 enhances high-salinity stress tolerance. Our data indicated that the expression levels of 330 genes were upregulated by Natolen128 treatment compared with that of Necolen124. Treatment with Natolen128 increased expression of hypoxia-responsive genes including ethylene biosynthetic enzymes and PHYTOGLOBIN, which modulate accumulation of nitric oxide (NO) level. NO was slightly increased in plants treated with Natolen128. These results suggest that Natolen128 may regulate NO accumulation and thus, improve salinity stress tolerance in A. thaliana.

17.
Pharmacol Res ; 167: 105518, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33636353

RESUMO

Catabolism of branched-chain amino acids (BCAAs) is affected by various physiological conditions and its abnormality is associated with glucose metabolism, heart disease, and neurological dysfunction. The first two steps of the BCAA metabolic pathway are common to the three BCAAs (leucine, isoleucine, and valine). The second step is an irreversible rate-limited reaction catalyzed by branched-chain α-keto acid dehydrogenase (BCKDH), which is bound to a specific kinase, BCKDH kinase (BDK), and inactivated by phosphorylation. Here, we investigated potential new BDK inhibitors and discovered valsartan, an angiotensin II type 1 receptor (AT1R) blocker, as a new BDK inhibitor. BCKDH phosphorylation and the BCKDH-BDK interaction were inhibited by valsartan in vitro. Valsartan administration in rats resulted in increased BCKDH activity by decreasing the dephosphorylated level of BCKDH complex, bound forms of BDK from BCKDH complex as well as decreased plasma BCAA concentrations. Valsartan is a novel BDK inhibitor that competes with ATP, via a different mechanism from allosteric inhibitors. The BDK inhibitor has been shown to preserve cardiac function in pressure overload-induced heart failure mice and to attenuate insulin resistance in obese mice. Our findings suggest that valsartan is a potent seed compound for developing a powerful BDK inhibitor and useful medication for treating heart failure and metabolic diseases with suppressed BCAA catabolism.


Assuntos
Anti-Hipertensivos/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases/metabolismo , Valsartana/farmacologia , 3-Metil-2-Oxobutanoato Desidrogenase (Lipoamida)/metabolismo , Aminoácidos de Cadeia Ramificada/metabolismo , Animais , Feminino , Mapas de Interação de Proteínas/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
18.
Front Plant Sci ; 12: 634068, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33613612

RESUMO

Vernalization is the promotion of flowering after prolonged exposure to cold. In Arabidopsis thaliana, vernalization induces epigenetic silencing of the floral repressor gene FLOWERING LOCUS C (FLC). The repressive epigenetic mark trimethylation of lysine 27 on histone H3 proteins (H3K27me3) is a critical contributor to the epigenetic silencing of FLC. Interestingly, the deposited H3K27me3 in the FLC locus can be erased by short-term high-temperature treatment. This is referred to as devernalization. In this study, we identified a novel chemical compound, 4-Isoxazolecarboxylic acid, 3,5-dimethyl-2-(4-fluorophenyl)-4-isoxazole carboxylic acid 1-methyl-2-oxoethyl ester named as DEVERNALIZER01 (DVR01), which induces devernalization in Arabidopsis seedlings, by an FLC-luciferase reporter-based high-throughput screening assay. DVR01 decreased the amount of H3K27me3 in the FLC locus in vernalized plants, resulting in the upregulation of FLC in the whole plant, including the vasculature and meristem, where FLC represses floral induction genes. We also showed that a 2-week treatment with DVR01 reverted plants with a vernalized status back to a fully non-vernalized status. Collectively, this study provides a novel structure of DVR01, which modulates devernalization via demethylation of H3K27me3 in the FLC locus.

19.
Chem Commun (Camb) ; 57(17): 2180-2183, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33527102

RESUMO

γ-Linolenic acid (GLA) is reported to show tumor-selective cytotoxicity through unidentified mechanisms. Here, to assess the involvement of oxidized metabolites of GLA, we synthesized several deuterated GLAs and evaluated their metabolism and cytotoxicity towards normal human fibroblast WI-38 cells and VA-13 tumor cells generated from WI-38 by transformation with SV40 virus. Deuteration of GLA suppressed both metabolism and cytotoxicity towards WI-38 cells and increased the selectivity for VA-13 cells. Fully deuterated GLA was visualized by Raman imaging, which indicated that GLA is accumulated in intracellular lipid droplets of VA-13 cells. Our results suggest the tumor-selective cytotoxicity is due to GLA itself, not its oxidized metabolites.


Assuntos
Ácido gama-Linolênico/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Deutério , Fibroblastos/efeitos dos fármacos , Humanos , Estrutura Molecular , Análise Espectral Raman
20.
J Am Chem Soc ; 143(4): 2078-2087, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33464888

RESUMO

CRY1 and CRY2 proteins are highly conserved components of the circadian clock that controls daily physiological rhythms. Disruption of CRY functions are related to many diseases, including circadian sleep phase disorder. Development of isoform-selective and spatiotemporally controllable tools will facilitate the understanding of shared and distinct functions of CRY1 and CRY2. Here, we developed CRY1-selective compounds that enable light-dependent manipulation of the circadian clock. From phenotypic chemical screening in human cells, we identified benzophenone derivatives that lengthened the circadian period. These compounds selectively interacted with the CRY1 photolyase homology region, resulting in activation of CRY1 but not CRY2. The benzophenone moiety rearranged a CRY1 region called the "lid loop" located outside of the compound-binding pocket and formed a unique interaction with Phe409 in the lid loop. Manipulation of this key interaction was achieved by rationally designed replacement of the benzophenone with a switchable azobenzene moiety whose cis-trans isomerization can be controlled by light. The metastable cis form exhibited sufficiently high half-life in aqueous solutions and structurally mimicked the benzophenone unit, enabling reversible period regulation over days by cellular irradiation with visible light. This study revealed an unprecedented role of the lid loop in CRY-compound interaction and paves the way for spatiotemporal regulation of CRY1 activity by photopharmacology for molecular understanding of CRY1-dependent functions in health and disease.


Assuntos
Relógios Circadianos/efeitos dos fármacos , Criptocromos/efeitos dos fármacos , Animais , Relógios Circadianos/fisiologia , Humanos , Luz
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...